Việc kết hợp giữa ngôn ngữ và khoa học máy tính có thể giúp đẩy nhanh quá trình học những ngôn ngữ vốn không phải tiếng mẹ đẻ, kể cả những ngôn ngữ được xem là khó như tiếng Việt. Quá trình này không chỉ giúp con người học ngoại ngữ nhanh hơn mà còn giúp trí tuệ nhân tạo có thể “hiểu” và “phản hồi” ngôn ngữ tự nhiên tốt hơn.
Theo PGS.TS Đinh Điền, Giám đốc Trung tâm Ngôn ngữ học tính toán, Trường Đại học Khoa học tự nhiên, Đại học Quốc gia TP.HCM, việc ứng dụng AI rất cần thiết để giải quyết các vấn đề trong ngôn ngữ học. Nhờ việc này, bên Trung tâm đã có thể giải được nhiều bài toán học ngôn ngữ nhanh chóng.
Cụ thể, bước đầu tiên của việc học bất kỳ một ngôn ngữ nào là dạy ngữ âm. Rào cản ở đây là tiếng Việt có thanh điệu. Do đó, khi dạy cho những người học thuộc hệ ngôn ngữ không có thanh điệu như người Anh, Pháp… sẽ rất khó. Lúc này, phần mềm ứng dụng AI trong dạy ngoại ngữ có thể mô phỏng khẩu hình miệng, phát âm sẵn để người học bắt chước.
Sau đó, người học tập phát âm lại, thu vào phần mềm, sử dụng công nghệ đối sánh giữa phát âm của người học và phát âm chuẩn từ phần mềm, cải thiện nhanh khả năng phát âm. Tất cả các công đoạn trên đều bắt buộc phải ứng dụng AI.
“Có thể nói, AI đã thay đổi cách dạy – học của ngành giáo dục. Thực tế, rất nhiều các ứng dụng trí tuệ nhân tạo đã ra đời nhằm hỗ trợ quá trình dạy – học trở nên nhanh chóng, hiệu quả hơn”, PGS.TS Đinh Điền nhận định.
Tương tự câu chuyện của PGS Điền, quá trình nghiên cứu và phát triển trợ lý giọng nói tiếng Việt Kiki trên ô tô cũng là một khía cạnh ứng dụng của trí tuệ nhân tạo (AI) khi chuyển đổi giọng nói con người thành một định dạng hữu ích và có thể hiểu được bằng các ứng dụng máy tính.
Anh Nguyễn Hoàng Khánh Duy, người viết những dòng code đầu tiên cho Kiki chia sẻ, để huấn luyện mô hình AI đủ thông minh khi nhận diện giọng nói, phản hồi thông tin đúng cho người dùng, thì dữ liệu ngôn ngữ đóng vai trò chủ chốt.
Dẫn chứng, chức năng rất quan trọng với người dùng trợ lý tiếng Việt Kiki trên ôtô là dẫn đường. Do đó, đội ngũ phát triển sản phẩm phải chuẩn bị dữ liệu, vốn từ vựng để hỗ trợ “mượt” cho các câu lệnh từ người dùng.
Sau quá trình thu thập dữ liệu, huấn luyện mô hình, chỉ số thể hiện chất lượng nhận diện giọng nói ở phiên bản sau đã cải thiện 40% so với ban đầu. Việc nhận diện giọng nói trên xe ô tô không chỉ dừng lại ở mỗi bài toán về dẫn đường, địa điểm mà còn nhiều vấn đề khác.
Ví dụ, đặc thù sử dụng Kiki trên xe ô tô thì tiếng ồn do động cơ, gió hay tiếng phát ra từ các thiết bị giao thông trên đường cũng rất lớn, điều này ảnh hưởng trực tiếp tới chất lượng nhận diện giọng nói của Kiki trên xe. Do đó, đòi hỏi đội ngũ Kiki phải cố gắng giả lập điều kiện ồn bằng cách tăng cường dữ liệu giọng nói trong điều kiện tiếng ồn sao cho sát với cuộc sống thực tế nhất.
Ngoài ra, bằng các kỹ thuật mới trên thế giới như self-supervised (học tự giám sát), Kiki đang cố gắng “học” từ cả những dữ liệu không được gán nhãn, để cải thiện mô hình tốt hơn nữa. Tính ổn định của trợ lý giọng nói tiếng Việt này đang cải thiện với việc không ngừng đào tạo, nâng cấp sản phẩm.
Rõ ràng, tiến bộ của công nghệ đang diễn ra hàng ngày, hàng giờ. ChatGPT ra đời cuối năm 2022 đã trả lời một phần cho câu hỏi về cách dữ liệu lớn vận hành. Công nghệ đang “bước” vào giữa đời sống, đặc biệt, trong giáo dục, ngôn ngữ, những lĩnh vực vốn phụ thuộc nhiều vào con người trước đây. AI dường như đã tái định nghĩa cách chúng ta học tập, làm việc, sinh hoạt,… nhằm từng bước ứng dụng tốt hơn công nghệ này vào cuộc sống.